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Figure 1 The artificial grammar used by Reber and Allen
(1978), Dulany et al. (1984), and Perruchet and Pacteau

(1990) among others. For example, MTTV and VXVRXVT are

grammatical, whereas MXVT is not grammatical.
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2.32.1 Introduction

All of us have learned much without parental super-

vision and outside of any form of planned academic

instruction, and more generally without any inten-

tional attempts to acquire information about the

surrounding world. Countless examples could be

found in domains as diverse as first-language acquisi-

tion, category elaboration, sensitivity to musical

structure, acquisition of knowledge about the physi-

cal world, and various social skills. All of these

domains have several features in common. In partic-

ular, they are commonly described as governed by

complex abstract rules by scientists, whether they

would be linguists, musicologists, physicists, or

sociologists. Also, learning in those situations mainly

proceeds through the learner’s exposure to a struc-

tured environment, without negative evidence (i.e.,

without direct information about what would contra-

dict the rules underlying the domain).
Despite the pervasiveness of these forms of learn-

ing in real-world settings, it is worth stressing that

they have been virtually ignored by experimental

psychology for decades. At the beginning of the cog-

nitive era, the study of learning was essentially

devoted to classical and operant conditioning on the

one hand, and to the formation of concepts or prob-

lem solving processes on the other. The above

phenomena seem hardly reducible to simple condi-

tioning effects in regards to their complexity, and

research on concept learning and problem solving

does not provide a priori a better account, primarily

due to the fact that the hypothesis testing strategies

essential in these research domains do not seem

applicable in situations where negative evidence is

lacking. This empirical and conceptual vacuum

opened the door to the upsurge of the nativist per-

spective, which characterized the cognitive approach

from its outset.
This chapter presents a stream of research that is

primarily aimed at exploring the forms of learning

illustrated in the examples above through laboratory

situations involving arbitrary materials (for over-

views, see Berry and Dienes, 1993; Berry, 1997;

Cleeremans et al., 1998; French and Cleeremans,

2002; Jimenez, 2003; Perruchet and Pacton, 2006;

Reber, 1993; Seger, 1994; Shanks, 2005; Stadler and

Frensch, 1998). This field of research evolved essen-

tially from the end of the 1980s, although its roots are

in the pioneering studies of Arthur Reber, who

coined the term ‘implicit learning’ (IL) about 40
years ago (Reber, 1967). The implications of the
results issued from IL research for the nativist/
empiricist debate will be addressed in the final dis-
cussion, after having examined what is learned in this
context, how ‘implicit’ is implicit learning, and the
relations of laboratory research with real-world
situations of learning.
2.32.2 Rules, Instance-Based
Processing, or Sensitivity to Statistical
Regularities?

2.32.2.1 Learning Rules

A large part of the literature on IL exploits the
artificial grammar learning paradigm, initially pro-
posed by Reber (1967). Participants first study a set of
letter strings generated from a finite-state grammar
that defines legal letters and permissible transitions
between them (Figure 1). Typical instructions do
not mention the existence of a grammar and are
framed so as to discourage participants from engaging
in explicit, intentional analysis of the material.
Participants are then subsequently informed about
the rule-governed nature of the strings and asked to
categorize new grammatical and nongrammatical let-
ter strings. Participants are typically able to perform
this task with better-than-chance accuracy, while
remaining unable to articulate the rules used to gen-
erate the material. This empirical outcome has been
unambiguously confirmed by a vast number of sub-
sequent experimental studies involving many
variants of the situation.

Reber’s (1967) original proposal was that partici-
pants have internalized the constraints embodied by
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the generation of rules during training. Rule abstrac-

tion is assumed to occur during the study phase,

when participants are exposed to a sample of letter

strings generated from the grammar. During the test

phase, participants are assumed to use the acquired

knowledge, stored in an abstract format, to judge the

grammaticality of new items. Other illustrations of

this reasoning can be found in many subsequent

studies. Let us consider those by Lewicki et al.

(1988) and McGeorge and Burton (1990).
In the Lewicki et al. (1988) paradigm, participants

were asked to perform a four-choice reaction-time

task, with the targets appearing in one of four quad-

rants on a computer screen. They were simply asked

to track the targets on the numeric keypad of the

computer as fast as possible. The sequence looked

like a long and continuous series of randomly located

targets. However, this sequence was organized on the

basis of subtle, nonsalient rules. Indeed, unbeknown

to participants, the sequence was divided into a suc-

cession of ‘logical’ blocks of five trials each. In each

block, the first two target locations were random,

while the last three were determined by rules. The

participants were unable to verbalize the nature of

the manipulation and, in particular, they had no

explicit knowledge of the subdivision into logical

blocks of five trials, which was a precondition that

had to be satisfied if they were to grasp the other

rules. However, performance on the final trials of

each block, the locations of which were predictable

from the rules, improved at a faster rate and was

better overall than performance on the first, random,

trials. Lewicki et al. (1988) accounted for these results

by postulating that the structuring rules were discov-

ered by a powerful, multipurpose unconscious

algorithm abstractor.
In the McGeorge and Burton (1990) study, which

initiated a stream of research on the so-called ‘invar-

iant learning,’ participants were asked to perform an

arithmetic task on a set of four-digit numbers.

Unbeknown to them, each four-digit number con-

tained one ‘3’ digit (the ‘invariant’). In a subsequent

forced-choice recognition test, participants were

shown 10 pairs of four-digit numbers. They were

told that one of the numbers in each pair was seen

during the study phase, and that they had to find it. In

fact, all the numbers were new, but half of them

contained one ‘3’ as in the study strings, while no ‘3’

occurred in the other half. Participants choose above

chance the numbers containing a ‘3,’ although they

were unable to report anything pertinent to the
invariant digit. The authors inferred that participants
had learned the critical rule unconsciously.

These results, and most of the others in the early
IL literature, have been shown to be empirically
robust in subsequent studies. However, two other
interpretations have been proposed. Their common
intuition is that people do not abstract the rules of the
domain, but instead learn about the product of the
rules.
2.32.2.2 The Instance-Based or Episodic
Account

The first historical alternative to the abstractionist
position in the field of artificial grammar learning is
the so-called instance-based or memory-based model
proposed by Brooks (Brooks, 1978; Vokey and
Brooks, 1992). In Brooks’ model, subjects who are
shown grammatical strings during the study phase
store the strings in memory, without any form of
condensation or summary representation. During
the test phase, they judge for grammaticality of test
strings as a function of their similarity to specific
stored strings. The instance-based model works
because, if no special care is taken to generate the
material, grammatical test items tend to look globally
more similar to study items than ungrammatical test
items.

Vokey and Brooks (1992) made independent the
usually confounded factors of specific similarity and
grammaticality, in order to assess the size of the effect
of each factor on grammaticality judgments. Test
items were classified as similar when they differed
by only one letter from one study item, and dissimilar
when they differed by two or more letters from any
study items. The authors obtained a reliable effect of
specific similarity on grammaticality judgments (see
also McAndrews and Moscovitch, 1985). As
expected, similar items were more often classified
as grammatical than dissimilar items when their
grammatical status (i.e., their consistency with the
grammar) was kept constant. However, the gramma-
ticality factor also had a significant, and usually
additive, effect. Similar evidence was collected by
Cock et al. (1994) in invariant learning. The authors
demonstrated that similarity to instances in the study
phase was even a more important factor than appar-
ent knowledge of the invariant feature in the
McGeorge and Burton (1990) paradigm.

To account for the fact that the similarity to a
specific training item fails to account for all the
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variance in performance, Vokey and Brooks (1992;
Brooks and Vokey, 1991) suggested that the similar-
ity may also be computed with the whole set of study
items instead of a single one (see also Pothos and
Bailey, 2000, for another measure of similarity). The
currently prevalent interpretation keeps the idea of
some kind of pooling or summation over multiple
episodes, but privileges a formulation in terms of
statistical regularities.
2.32.2.3 The Sensitivity to Statistical
Regularities

While the instance-based model considers whole
episodes (e.g., VXVRXVT in artificial grammar
learning), this alternative account considers elemen-
tary components (e.g., the individual letters). The
consequences are considerable. Indeed, large epi-
sodes are idiosyncratic, and hence they generate
distinctive and independent memory traces. By con-
trast, elementary components occur iteratively under
the same or other combinations, and hence it makes
sense to describe the to-be-learned stimuli using
statistical concepts, such as frequency, probability,
or contingency. For this reason, this approach is
designated here as the statistical account, even
though it is most commonly referred to as the ‘frag-
mentary’ approach in the conventional IL literature.
It is worth noting that the term ‘statistics’ does not
necessary entail that learners perform statistical com-
putations, an issue that will be addressed later (see
the section titled ‘Statistical computations and chunk
formation’).

The general principle of this account is straight-
forward: Organizing rules generates statistical
regularities in the world, and people adjust their
behavior to those regularities. Understanding how
this account works in artificial grammar learning is
easy. Looking at the grammar shown in Figure 1, it
appears that that some associations between letters
are possible (e.g., MV), and other impossible (e.g.,
MX), and that among the legal associations, some
are more frequent than others (e.g., RX presumably
occurs more often than RM). If participants learn
something about the frequency distribution of the
pairs of letters (bigrams) that compose the study
strings, they should perform subsequent grammati-
cality judgments better than chance. Perruchet and
Pacteau (1990) tested this hypothesis. They reasoned
that, if subjects learn only bigram information when
faced with the whole strings, the direct presentation
of the bigrams, which precludes the use of any high-

level rules, should not change the final performance.

The prediction was confirmed; the performance of

participants who had learned using the complete

grammatical strings (as usual) and those who were

trained using the bigrams from which these strings

were composed were statistically indistinguishable.

Other experiments from the same study and other

studies (Dienes et al., 1991; Gomez and Schvaneveldt,

1994) confirmed the importance of bigrams knowl-

edge, although they showed that participants also

learn other piecemeal information, such as the location

of permissible bigrams and the first and last letters of

the strings.
The question is now: Does this interpretation

work in general? It could be argued indeed that

artificial grammar learning is especially well-fitted

to a statistical interpretation, because the rules can

be easily translated in terms of statistical regulari-

ties. To address this question, let us consider how

the Lewicki et al. (1988) study presented above can

be reinterpreted. Recall that a precondition to grasp

the complex second-order dependency rules struc-

turing the sequence was a parsing of the whole

sequence into logical blocks of five trials, and that

participants were fully unconscious of doing so.

However, Perruchet et al. (1990) demonstrated

that participants could learn the task without ever

performing the segmentation of the sequence into

logical blocks. Instead, they could become sensitive

to the relative frequency of small units, comprising

two or three successive locations. Some of the pos-

sible sequences of two or three locations were more

frequent than others, because the rules determining

the last three trials within each five-trial block

prohibited certain transitions from occurring. In

particular, an examination of the rules shows that

they never generated back-and-forth movements. As

a consequence, the back-and-forth transitions were

less frequent on the whole sequence than the other

possible movements. The crucial point is that

these less frequent events, which presumably elicit

longer reaction times, were exclusively located on

the random trials. This stems not from an unfortu-

nate bias in randomization, but from a logical

principle: The rules determined both the relative

frequency of certain events within the entire

sequence and the selective occurrence of these

events in specific trials (for an alternative inter-

pretation based on connectionist modeling, see

Cleeremans and Jimenez, 1998).
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A similar reanalysis was performed by Wright and
Burton (1995) on the McGeorge and Burton (1990)
invariant task. Wright and Burton observed that a by-
product of the invariant rule was to modify the prob-
ability of occurrence of observing a digit repetition in
the strings. More precisely, the strings that contain
one ‘3’ include, on the mean, a smaller proportion of
repeated digits than the strings in which no ‘3’ occurs,
all simply because the chances of generating repeated
digits are lesser over three than over four successive
drawings. The authors showed that at least a part of
the participants’ above-chance performance during
the test was due to the fact that they tended to reject
the items containing repetitions, rather than the
items violating the invariant rule.

What is new in these examples (for a similar
illustration, see the reinterpretation of Kushner
et al. (1991) by Perruchet (1994b)) with regard to
the artificial grammar-learning situation is the fact
that the link between the generating rules and the
distributional statistics of simple and salient events is
far from obvious. The fact that rules may have
remote consequences, the learning of which having
effects similar to the learning of the rules themselves,
may obviously be thought of as a drawback in the
experimental designs, without any implication out of
the laboratory studies. However, it may also be
thought of as a quite fundamental outcome, essential
to understand the power of the statistical approach in
the natural situation of learning, as the section titled
‘Discussion: about nativism and empiricism’ will
emphasize.
2.32.2.4 Rules versus Statistics: A Crucial
Test

How can rule-based and statistical interpretations be
discriminated? When the rules of a domain generate a
set of events so restricted that all the possible events
can be exhaustively experienced by a subject, it may
be impossible to discriminate between the two types of
interpretations. However, this case is largely deprived
of interest. Indeed, the power of the rules is that they
make people able to adapt to new situations from
previous exposure to a subset of the events the rules
can generate. Here is the hint for a crucial test.

For a first example, let us consider an argument for
rules put forth by Reber and Lewis (1977) in the
context of artificial grammar learning. In a given
experiment, participants are exposed to a subset of
the virtual full set of strings generated by the grammar,
and this subset cannot be perfectly representative of
the full set for all aspects. For instance, the frequency
distribution of the observed bigrams has a high prob-
ability of departing to some extent from the frequency
of the bigrams composing the full set of strings. Reber
and Lewis argued that if participants abstract the rules
of the grammar, they should be sensitive to the bigram
frequency of the virtual full set of strings, and not the
frequency of occurrence of the bigrams composing the
strings actually displayed in the study phase. They
provided empirical data supporting this hypothesis,
and Reber (1989) construed these data as one of the
main supports for his contention that studying gram-
matical letter strings gives access to the abstract
structure of the grammar. The logic of the argument
is indeed sound, but unfortunately, the supporting
data turned out to be due to various methodological
drawbacks inherent to the Reber and Lewis procedure
(Perruchet et al., 1992). In fact, participants are sensi-
tive to the frequency distribution of the bigrams they
actually perceived.

In the preceding example, the possibility of dis-
criminating interpretations based on rules and
statistics stems from the fact that the subset of items
to which participants are exposed are not represen-
tative of the whole set of items due to sampling
biases. The same logic may be implemented in a
more systematic way, by training participants with a
given material and testing them with different mate-
rial. The following section examines the findings
obtained in these so-called ‘transfer’ situations,
which have been heavily used in IL research.
2.32.2.5 The Phenomenon of Transfer:
The Data

In the standard paradigm of transfer in artificial
grammar learning, the letters forming the study
items are changed in a consistent way for the test of
grammaticality (e.g., M is always replaced by C, X by
P, etc.). Reber (1969) and several subsequent studies
(e.g., Mathews et al., 1989; Dienes and Altmann, 1997;
Manza and Reber, 1997; Shanks et al., 1997;
Whittlesea and Wright, 1997) have shown that par-
ticipants still outperform chance level under these
conditions. The principle underlying the ‘changed
letter procedure’ has been extended to other surface
changes. For instance, the training items and the test
items may be, respectively, auditory items and visual
items (Manza and Reber, 1997), color and color
names, sounds and letters (Dienes and Altmann,
1997), or vice versa. Successful transfer was observed
in each case.
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The phenomenon of transfer has also been
observed in invariant learning. McGeorge and Burton
(1990) found that the selection of number strings con-
taining the invariant digit persisted when study strings
were presented as digits (e.g., 1234) and test strings as
their word equivalents (e.g., one two three four; see
Bright and Burton (1998) for similar examples of trans-
fer in another invariant learning task).

Transfer has even been observed in infants. In
Marcus et al. (1999), 7-month-old infants were
exposed to a simplified, artificial language during a
training phase. Then they were presented with a few
test items, which were all composed of new syllables.
For instance, in one experiment, infants heard 16
three-word sentences such as gatiti, linana, or tanana,

during the study phase. All of these sentences were
constructed on the basis of an ABB grammar. The
infants were then presented with 12 other three-word
sentences, such as wofefe and wofewo. The crucial point
is that, although all of the test items were composed
of new syllables, only half of the items were con-
structed from the grammar with which the infants
had been familiarized. In the selected example, the
grammatical item was wofefe. Wofewo introduces a
structural novelty in that it is generated from a con-
current ABA grammar. The infants tended to listen
more to the sentences generated by the ABA gram-
mar, thus indicating their sensitivity to the structural
novelty. In another experiment, infants were shown
to be able to discriminate sentences generated by an
AAB grammar. Similar studies using more complex
material have been performed with 11-month-old
infants (Gomez and Gerken, 1999).
2.32.2.6 The Phenomenon of Transfer:
The Interpretations

2.32.2.6.1 Rules?

Marcus et al. concluded that infants have the capacity
to represent algebraic-like rules and, in addition,
‘‘have the ability to extract those rules rapidly from
small amounts of input and to generalize those rules
to novel instances’’ (Marcus et al., 1999, p. 79).
Demonstrations of transfer in more complex situa-
tions in adults have elicited similar comments. For
instance, Reber, talking about performance in the
changed letter procedure in artificial grammar learn-
ing studies, claimed that

. . . the abstractive perspective is the only model of

mental representation that can deal with the
existence of transfer of knowledge across stimulus

domains. (Reber, 1993: 121)

A rule-based interpretation may have difficulty
accounting for the entire pattern of data, however.
First, the traditional emphasis on positive results
must not overshadow the fact that transfer failure
has frequently been reported in the literature on IL.
In the conclusion of their review on transfer in the
most current IL paradigms, Berry and Dienes pointed
out that

. . . the knowledge underlying performance on

numerous tasks . . . often fails to transfer to different

tasks involving conceptually irrelevant perceptual

changes. (Berry and Dienes, 1993: 180)

This empirical finding leads the authors to propose
that limited transfer to related tasks is one of the
important key features of performance in IL tasks.
Moreover, in experiments where positive evidence of
transfer is reported, performance levels on transfer
situations are generally lower than performance
levels on the original training situation. This so-
called transfer decrement phenomenon raises a prob-
lem for a rule-based standpoint. In an authoritative
discussion on the use of abstract rules, Smith et al.
(1992) posit as the first of their eight criteria for rule
use that ‘‘Performance on rule-governed items is as
accurate with unfamiliar as with familiar material’’
(Smith et al., 1992, p. 7; see also Anderson, 1994, p. 35;
Shanks, 1995, Ch. 5; Whittlesea and Dorken, 1997,
p.66). Manza and Reber (1997) acknowledge this
implication of their own abstractionist view.
Clearly, this prediction of rule-based accounts has
scarce experimental support at best.

However, observing that rule-based interpretation
of transfer is, after all, not so well-fitted as might
expected has limited interest until better interpreta-
tions are put forward. Are there alternatives?

2.32.2.6.2 Explicit inferences during the

test?

In the standard situations of artificial grammar learn-
ing, most people are able to learn the abstract rules of
the grammar when they are instructed to search for
rules (Turner and Fischler, 1993) or when they are
given incidental instructions which guide them
toward the deep structure of the material (Wittlesea
and Dorken, 1993). A first alternative possibility to
account for transfer in IL studies is that transfer is
due to the involvement of explicit reasoning, despite
the instructions given to participants.
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This account finds support in the examination of
the tasks in which transfer routinely succeeds and
tasks in which transfer fails. As noted by Newell
and Bright (2002), the tasks that trigger transfer are
those in which participants are instructed to use
knowledge that they have acquired during training,
such as artificial grammar learning tasks and invar-
iant learning tasks. These instructions inevitably shift
subjects to a rule-discovery mental set. The tasks in
which subjects are not explicitly engaged to rely on
what they saw in study phase, such as serial reaction-
time (SRT) tasks and control interactive tasks, are far
less prone to transfer. In SRT tasks, for instance, a
target stimulus appears on successive trials at one of a
few possible positions on the computer screen.
Participants are simply asked to react to the appear-
ance of the target by pressing a key that spatially
matches the location of the target on a keyboard.
Typically, the same sequence of trials is repeated
throughout the session. Participants exhibit a
decrease in reaction times with regard to a control
condition, without ever being informed about the
presence of a repeated structure. In this case, transfer
to dissimilar surface feature typically fails (Stadler,
1989; Willingham et al., 1989).

The role of explicit reasoning in changed-letter
transfer in artificial grammar learning is further sug-
gested by the fact that transfer is performed better
when the training session involves intentional (i.e.,
rule searching) rather than incidental instructions
(Mathews et al., 1989). Whittlesea and Dorken
(1993) failed to obtain changed-letter transfer in sub-
jects whose attention was not focused on the
structure of the situation. In the same vein, Gomez
(1997) showed that changed-letter transfer occurred
only in subjects who had sufficient explicit knowl-
edge of the rules.

Although these studies suggest that transfer per-
formance partly depends on the involvement of
conscious and deliberate processes, it is difficult to
account for all the positive results in those terms. To
evoke only one counterargument, the observation of
transfer in infants (Gomez and Gerken, 1999; Markus
et al., 1999) can hardly be explained by the recourse
to intentional rule-breaking strategies. Is it possible
to account for transfer in IL without any recourse to
rules?

2.32.2.6.3 Disentangling rules and

abstraction

There is no doubt that the evidence of transfer is
indicative of abstraction. However, the view that
abstraction is indicative of rule formation and rule
use has been heavily challenged. As cogently argued
by Redington and Chater (2002), ‘‘surface-indepen-
dence and rule-based knowledge are orthogonal
concepts.’’

To begin with a simple case, let us consider Manza
and Reber’s (1997) results, showing a transfer between
auditory and visual modalities in the artificial gram-
mar learning area. These authors interpret their
findings as providing support for their abstractionist,
rule-based view. However, the phenomenon can be
easily explained otherwise. Any sequence – such as
VXMTR – presented orally will be immediately
recognized when displayed visually, irrespective of
whether this sequence is generated by a grammar or
not. This is because the perceptual primitives, namely
the letters V, X, and so on, are processed to an abstract
level that makes them partially independent of their
sensory format. The differences between the two
explanations is worth stressing. In the former case, a
rule-governed pattern is assumed to be extracted from
the auditory stimuli before being applied to the visual
stimuli. In the latter case, matching is directly per-
formed at the levels of the perceptual primitives. The
same comment can be applied to many other studies.
For example, the transfer between colors and the
name of colors (Dienes and Altmann, 1997) and the
transfer between digits and their word equivalents
(McGeorge and Burton, 1990) can also be accounted
for by the natural mapping between the primitives
involved in the experiment.

At first glance, the above explanation does not
apply to all transfer results. As a case in point, it does
not seem to work for the studies by Marcus et al.
(1999) in which transfer is observed between, say, gatiti

and wofefe, because there is no natural mapping
between ga and wo, or ti and fe. Reinterpretation of
the Marcus et al. data is possible along the same line,
however, if one assumes that the perceptual primitives
can be relational in nature. The relation that needs to
be coded is the relation ‘same-different,’ or, in other
words, the only ability that infants need to possess is
that of coding the repetition of an event. Indeed, as
pointed out by McClelland and Plaut (1999), gatiti,

wofefe, and more generally all the ABB items, can be
coded as different-same, whereas none of the other
items can be coded using the same schema.

As surprising as this conclusion may be, the
demonstrations of transfer stemming from the more
complex situations of artificial grammar learning in
adults imply the coding of no more complex relations
than event repetitions (e.g., Tunney and Altmann,
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1999; Gomez et al., 2000; for an overview, see
Perruchet and Vinter, 2002, Section 6). Lotz and
Kinder (2006) confirmed and extended this conclu-
sion. They showed that the sources of information
used in transfer tasks in artificial grammar learning
studies concern the local repetition between adjacent
elements, as well as the repetition of nonadjacent
elements in the whole items.

Overall, this analysis demonstrates that transfer,
such as observed in IL settings, is in no way indica-
tive of rule knowledge. It is fairly compatible with a
statistical approach, provided one acknowledges the
possibility that statistical processes operate not only
on surface features (such as forms or colors), but also
on more abstract properties and on simple relational
features, such as the repetition of events. The idea
that transfer does not imply rule abstraction has also
gained support from the possibility of accounting
for transfer performance within a connectionist
framework (Altman and Dienes, 1999; McClelland
and Plaut, 1999; Seidenberg and Elman, 1999;
Christiansen and Curtin, 1999). Note also that trans-
fer has been claimed to be compatible with an
interpretation focusing on instance-based processing,
thanks to the notion of abstract analogy (Brooks and
Vokey, 1991), although Lotz and Kinder (2006) failed
to find an empirical support for this account.
2.32.2.7 A Provisional Conclusion

There is evidence that the analogy with specific
items may account for a specific part of variance in
performance. The Vokey and Brooks (1992) demon-
stration, presented in the section titled ‘The instance-
based or episodic account,’ has been challenged
(Knowlton and Squire, 1994; Perruchet, 1994a), but
additional evidence has been provided since then
(Higham, 1997). The interest of the instance-based
model resides in its highlighting the fact that behav-
ior may be implicitly affected by individual episodes
rather than simply by large amounts of training.
However, there is a consensus on the idea that this
account cannot be thought of as exclusive. It seems
inevitable to jointly consider the pooled influence of
a series of events to account for the whole pattern of
data.

The two main views accounting for the influence
of multiple past events are based on rules and statis-
tics, respectively, but there is no symmetry between
the two accounts. Indeed, no one disputes the exis-
tence of statistical learning. This consensus comes
from the human ability to learn in the countless
situations in which regularities cannot be described
by a set of rules, as the concept has been defined
above. As a consequence, the only possible question
is: Do we need rules, in addition to statistical learn-
ing, to account for implicit learning in rule-governed
situations?

Here is the end of the consensus. On the one hand,
many authors respond ‘‘no.’’ Their position is based
on the fact that the sensitivity to statistical regulari-
ties is able to account for performance in most of the
experimental situations that were initially devised to
provide an existence proof for rule learning, includ-
ing transfer settings. In addition, when a direct test
has been performed to contrast the predictions of the
two models, predictions of the statistical account
have been unambiguously confirmed (see also
Perruchet (1994b) on the situation devised by
Kushner et al. (1991) and Channon et al. (2002) on
the biconditional grammar). On the other hand, other
authors (e.g., Knowlton and Squire, 1996) argue that
empirical evidence requires a dual process account,
mixing statistical learning and rule knowledge. Their
position stems from experimental studies in which
learning persists in test conditions where the simplest
regularities – those that are presumably captured by
statistical learning – have been made uninformative
(e.g., Knowlton and Squire, 1996; Meulemans and
Van Der Linden, 1997; but see Kinder and
Assmann, 2000). This kind of evidence is not fully
compelling, however, because it is not possible to
ascertain that all the possible sources of statistical
knowledge have been taken into account (see for
instance the reanalysis of Meulemans and Van der
Linden (1997) by Johnstone and Shanks (1999)). A
more principled demonstration, in which some spe-
cified content of knowledge would fail to be
approximated by statistical learning, would provide
a far stronger argument.

The remaining of this chapter focuses on statistical
learning. This does not mean that the possibility of
implicit rule learning can be considered as definitely
ruled out. This presumably will never be the case,
because proof of nonexistence is beyond the scope of
any empirical investigation. Needless to say, this
approach does not mean either that rule learning
does not exit at all; there is clear evidence that humans
are able to infer and use abstract rules when conscious
thought is involved. The very existence of science
should provide a sufficient proof for the skeptic.

The implications of focusing on statistical learn-
ing are that the questions and their experimental
approach will be considered irrespectively of
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whether the to-be-learned materials can be described
in terms of rules or not. Note that this focus is in
keeping with the recent literature on IL, which typi-
cally includes a number of situations that are not
governed by rules such as SRT tasks with repeated
sequences and word segmentation (e.g., Saffran et al.,
1997), as well as other situations, such as contextual
cuing (Chun and Jiang, 2003), that are not described
in this chapter due to space limitations.
2.32.3 Learning about Statistical
Regularities

Before examining the question of what processes
underlie behavioral tuning to statistical regularities,
one needs to identify the kinds of regularities to
which humans are sensitive.
2.32.3.1 What Is Learnable?

2.32.3.1.1 Frequency, transitional

probability, contingency

For many people, claiming that behavior is sensitive
to statistical regularities amounts to saying that be-
havior is sensitive to the absolute or the relative
frequency of events. For instance, participants in an
artificial grammar experiment may have learned that
MT occurred n times, or that a proportion p of the
displayed bigrams were MT. Considering only fre-
quency provides limited information, however. It
may be interesting to know the probability for ‘M’
to be followed by ‘T,’ a measure called conditional or
transitional probability. To assess whether ‘M’ is
actually predictive of ‘T,’ this probability must be
compared to the probability that another letter pre-
cedes ‘T’. The difference between these two
conditional probabilities is called DeltaP (Shanks,
1995). In addition, it may be worth considering the
reverse relations, namely the probability for ‘T’ to be
preceded by ‘M.’ This ‘backward’ transitional prob-
ability may be quite different from the standard,
forward transitional probability. The normative defi-
nition of contingency in statistics (such as measured,
for instance, by a �2 or a Pearson correlation)
requires a consideration of the bidirectional relations.
When data are dichotomized, for instance, Pearson
correlation is the geometrical mean of the forward
and backward DeltaP (for a more detailed presenta-
tion, see Perruchet and Peereman, 2004).

The focus on frequency in early studies on IL
does not mean that human behavior is only sensitive
to this variable. Indeed, all the measures of associa-
tion are generally correlated, so evidence collected to
support one specific measure is equivocal if no spe-
cial care is taken for controlling the other measures.
Aslin et al. (1998) demonstrated that participants
were sensitive to the transitional probability in
word-segmentation studies. These results have been
replicated in visual tasks (e.g., Fiser and Aslin, 2001),
so that most recent studies on statistical learning take
for granted that the statistics to which people are
sensitive are transitional probabilities. This conclu-
sion could be premature, given the correlations
between the different measures, and the paucity of
studies including different measures. In fact, the lit-
erature on conditioning has long suggested that even
animals such as rats or pigeons are sensitive to DeltaP
(Rescorla, 1967). Perruchet and Peereman (2004)
compared several measures of associations, and they
found that participants were more sensitive to the
bidirectional contingency than to simpler measures
of associations (although in a specific context). A
conservative conclusion could be that people are
sensitive to more sophisticated measures of associa-
tions than co-occurrence frequency, and further
study is needed for assessing more precisely which
statistic is the more relevant in each context.

2.32.3.1.2 Adjacent and nonadjacent

dependencies

A dimension orthogonal to the previous one concerns
the distance between the to-be-related events. The
early studies endorsing a statistical approach in the
IL domain focused on adjacent elements (typically
the bigrams of letters). The importance of adjacent
relations, however, does not mean that it is impossi-
ble to learn more complex information. A number of
studies in SRT tasks have investigated how reactions
times to the event n improved due to the information
brought out by the events n-1, n-2, n-3 (known as
first-order, second-order, and third-order depen-
dency rules, respectively), and so on. Second-order
dependencies can be learned quite easily and are now
used as a default in most SRT studies. Third-order
dependency rules can also be learned, although less
clearly (Remillard and Clark, 2001). However,
higher-order dependency rules are seemingly much
harder, or impossible to learn. For instance, even
after 60 000 practice trials, Cleeremans and
McClelland (1991) obtained no evidence for an effect
of the event four steps away from the current trial.

In the situations discussed so far, the relations
between distant events are not considered
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independently from the intervening events. By con-
trast, in the AXC structures investigated in several
recent studies, a relation exists between A and C irre-
spective of the intervening event X, which is
statistically independent from both A and C.
Examining whether learning those nonadjacent rela-
tionships is possible was prompted by the fact that
these relations are frequent in high-level domains
such as language and music. The studies investigating
the possibility of learning nonadjacent dependencies
between syllables or words (Gomez, 2002; Newport
and Aslin, 2004; Perruchet et al., 2004; Onnis et al.,
2005), musical sounds (Creel et al., 2004; Kuhn and
Dienes, 2005), digits (Pacton and Perruchet, in press),
and visual shapes (Turk-Browne et al., 2005) report
positive results. However, most of them conclude that
learning nonadjacent dependencies presupposes more
restrictive conditions than those required for learning
the relations between contiguous events. Gomez (2002)
showed that the degree to which the A_C relationships
were learned depended on the variability of the middle
element (X). For Newport, Aslin, and collaborators
(e.g. Newport and Aslin, 2004), the crucial factor is
the similarity between A and C. Learning seems also
much easier in a situation where the successive AXC
units are perceptually distinct (e.g., Gomez, 2002), than
in situations where they are embedded in a continuous
sequence (e.g., Perruchet et al., 2004). By contrast,
Pacton and Perruchet (in press) provided support for
a view in which nonadjacent dependencies can be
learned as well as adjacent dependencies insofar as
the relevant events are actively processed by partici-
pants to meet the task demands.

2.32.3.1.3 Processing multiple cues
concurrently

Up to now, we have examined how the learner
exploits one source of information, for instance,
event repetition. However, taken in isolation, a
source of information often has a limited value in
real-world settings. The system efficiency would be
considerably extended if various sources could be
exploited in parallel. The number of studies explor-
ing this issue is still tiny, but they provide converging
evidence for a positive assessment, as well in artificial
grammar learning (e.g., Kinder and Assmann, 2000;
Conway and Christiansen, 2006) as in SRT tasks (e.g.,
Hunt and Aslin, 2001). Studies on word segmentation
have also demonstrated the possibility of combining
statistical and prosodic cues (e.g., Thiessen and
Saffran, 2003). The concurrent exploitation of var-
ious information sources can be simulated by
connectionist networks (e.g., Christiansen et al.,
1998), a feature that strengthens the plausibility of
such a possibility in humans.
2.32.3.1.4 Does learning depend on

materials?

An impressive amount of data suggests that statistical
learning mechanisms are domain general. For
instance, although most studies in artificial grammar
learning involve consonant letters, a large variety of
other stimuli have been used occasionally, such as
geometric forms, colors, and sounds differing by their
timbre or their pitch, without noticeable difference.
Conway and Christiansen (2005) directly compared
touch, vision, and audition, and found many common-
alities, although sequential learning in the auditory
modality seemed easier than with the other two senses.
Likewise, data on word segmentation have been suc-
cessfully replicated with tones instead of syllables (e.g.,
Saffran et al., 1999; Saffran, 2002).

However, the fact that IL processes have a high
level of generality across and within sensory modal-
ities does not mean that they apply equally well to
any stimuli, as if statistical learning mechanisms were
blind to the nature of processed material. The well-
known difficulty of publishing null results certainly
accounts for a part of the apparent universality of IL
mechanisms. A closer look shows, for instance, that
learning may depend on aspects of the material that
could seem a priori irrelevant. For instance, there is
overwhelming evidence of rapid learning in standard
SRT tasks, in which a target appears in successive
trials at one of a few discrete locations. Chambaron
et al. (2006) explored a similar situation, except that
participants had to track a target that moved along a
continuous dimension. They fail to obtain evidence
of learning in several experiments, hence showing
that, in spite of a close parallel between continuous
tracking tasks and SRT tasks, taking benefit from the
repetition of a segment in continuous tracking task
appears to be considerably more difficult than taking
benefit from the repetition of a sequence in SRT
tasks. Moreover, recent research on statistical learn-
ing has shown that learning was highly dependent on
low-level perceptual constraints. For instance, for a
given statistical structure, the acoustic properties of
the artificial speechflow have been shown to be
determinant for learning to segment the speechflow
into words (e.g., Onnis et al., 2005). Shukla et al.
(2007) provides evidence that possible world-like
sequences, namely chunks of three syllables with
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high transition probabilities, are not recognized as
words if they straddle two prosodic constituents.

The efficiency of learning may also depend on
high-level expectancies about the structure of the
material. For instance, Pothos (2005) used an artifi-
cial grammar learning task in which the consonant
letters were replaced by the name of cities. The
sequences of cities were presented as the routes a
salesman has to travel. In one group of participants,
the training sequences matched the intuitive expec-
tation that the salesman follows routes that link
nearby cities, while in a second group, they conflicted
with this intuition. Learning, as assessed by the com-
parison with an adequate control group, occurred
only in the first group, as if a conflict between the
knowledge acquired by processing the statistical
structure of the stimuli and the intuitive expectations
about stimulus structure prevented learning from
occurring in the second group.
2.32.3.1.5 About the learners
Any discussion about learnability is meaningless
without considering the characteristics of the lear-
ners. Most of the studies reported above have been
performed on healthy adult participants.

Regarding first the effect of age, recent research
on statistical learning has shown the surprising learn-
ing abilities of infants. These abilities have been
initially revealed with auditory artificial languages
(e.g., Saffran et al., 1996), but they are in no way
limited to language-like stimuli. They concern
sounds or combinations of visual features as well
(e.g., Fiser and Aslin, 2001, 2002). Several studies
have also investigated IL in children. They suggest
that there is no noticeable evolution from 4- or 5-year-
old children to young adults (e.g., Meulemans et al.,
1998; Vinter and Detable, 2003; Karatekin et al., 2006).
Other studies suggest that IL does not decline with
healthy aging (e.g., Cherry and Stadler, 1995; Negash
et al., 2003). Furthermore, a number of studies have
reported impressive IL abilities in children (e.g.,
Detable and Vinter, 2004) and young adults (Atwell
et al., 2003) with mental retardation, and in patients
with psychiatric (e.g., Schwartz et al., 2003) and neu-
rological disorders, including amnesia (e.g.,
Meulemans and Van der Linden, 2003; Shanks et al.,
2006), Alzheimer’s disease (Eldridge et al., 2002),
Parkinson’s disease (e.g., Smith and McDowall, 2006),
closed-head injury (e.g., Vakil et al., 2002), and
Williams Syndrome (Don et al., 2003). Statistical
learning abilities have been shown in animals such as
nonhuman primates (e.g., Hauser et al., 2001) or even
rats (Toro and Trobalon, 2005).

These data have crucial implications for a number
of fundamental and applied issues. They do not
mean, however, that everyone shares equivalent abil-
ities whenever statistical learning is concerned. In
fact, comparative studies often select situations the
difficulty of which is a priori well-suited for the full
span of the investigated population. When the level
of difficulty is increased, a difference often emerges.
For instance, a deficit of performance has been
observed in complex IL tasks in elderly people (e.g.,
Howard et al., 2004) and in amnesic patients (Curran,
1997; Channon et al., 2002). This dependency of IL
with regard to learner’s general competencies when-
ever the learning settings become complex enough is
confirmed by studies on adult healthy people. For
instance, Dienes and Longuet-Higgins (2004)
observed that only participants experienced with
atonal music were able to learn artificial regularities
following the structures of serialist music.
2.32.3.2 Statistical Computations and
Chunk Formation

2.32.3.2.1 Computing statistics?

Observing that performances in IL tasks conforms to
statistical regularities may lead us to infer that lear-
ners compute statistics. Certainly, the idea that
learners unconsciously compute statistics using
the same algorithms as a statistician would use is
somewhat implausible. However, the possibility
of approximating the outcome of analytical com-
putations through connectionist networks (e.g.,
Redington and Chater, 1998) offers a much more
appealing alternative. Learning is performed by the
progressive tuning of the connection weights
between units within multilayer networks. Although
different types of networks have been used (see
Dienes, 1992), the Simple Recurrent Networks
(SRN), initially proposed by Elman (1990), have
been the most widely applied to IL. SRNs are typi-
cally trained to predict the next element of sequences
presented one element at a time. Cleeremans and
McClelland (1991) have shown that an SRN was
able to simulate the performance of human learners
in an SRT task in which the successive locations of
the target were generated by a finite-state grammar,
and the ability of SRNs to successfully account for
performance in various IL paradigms has been con-
firmed since then in a number of studies (e.g., Kinder
and Assmann, 2000). Certainly, due to the impressive
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ability of connectionist networks to simulate learner’s

performance, the idea that learners actually perform

statistical computations is taken for granted by a

number of authors. This idea is not compelling how-

ever. Inferring statistical computation from statistical

sensitivity may amount to repeating the same error

as the early researchers in IL, who inferred rule

abstraction from the behavioral sensitivity to rules.

An alternative interpretation emerges from the

observation that IL generally leads to the formation

of chunks.
2.32.3.2.2 The formation of chunks

The fact that learning leads to the formation of

chunks is largely consensual. This is obviously the

case in recent studies on word segmentation and

object formation, in which performance is directly

assessed through chunk formation. But this is also

true in most of the other situations of IL, in which

chunks are not the explicit end-product of learning.

A number of studies have shown that participants

learn small chunks of two or three elements in arti-

ficial grammar learning settings. Chunking the

material, far from being a degraded procedure, is a

highly efficient mode of coding. Indeed, dealing with

small units facilitates transfer and generalization.

This happens because, given the structure of finite-

state grammars, new items are formed by recombin-

ing old components. However, this is true only if the

chunks respect the statistical structure of the mate-

rial. To put the matter simply, assuming five events

(A, B, C, D, and E), forming the chunks ‘AB’ and

‘CDE’ is beneficial only if A and B on the one hand,

and C, D, and E on the other hand, form cohesive

structures. If ‘AB’ is frequently followed by C, and

‘DE’ frequently occurs in other contexts, then this

mode of chunking would be ill suited (Perruchet

et al., 2002).
The formation of chunks forming cohesive struc-

tures can be easily accounted for by the idea that

learners compute statistics. For instance, for Saffran

and Wilson (2003), verbal chunks are inferred from

statistical computations and then serve as the stuff for

further statistical computations. Fiser and Aslin

(2005) also consider that the visual input is chunked

into components according to the statistical coher-

ence of their components. To use the five-event

example, AB and CDE would emerge as from some

kind of cluster or factorial analyses once the correla-

tional structure of the events has been computed.
2.32.3.2.3 Are statistical computations

a necessary prerequisite?

Chunks consistent with the statistical structure of the
material can also emerge without prior statistical
computations. Simple memory mechanisms could
be sufficient. To begin with, let us consider the
ubiquitous phenomenon of forgetting. Because fre-
quently repeated events tends to be forgotten to a
lesser extent than less frequent events, forgetting
leads us to be sensitive to event frequency, without
any statistical ‘computation.’ Several models of IL
(Servan-Schreiber and Anderson, 1990; Knowlton
and Squire, 1996; Perruchet and Vinter, 1998a) rest
on this intuition. Again, in the example, the chunks
‘AB’ and ‘CDE’ would emerge from the fact that A
and B on the one hand, and C, D, and E on the other
hand, occur more often together than any other
combinations of events. In Perruchet and Vinter’s
Parser model, those chunks emerge simply because
other associations of events (such as ABC), if they
occur, are forgotten due to their relative rarity. The
difference with the statistical account is that, instead
of being inferred from the results of statistical com-
putation, chunk formation is the primary mechanism,
and the cohesive chunks are those that are selected
among a number of other ones due to well-known
laws of associative memory, primarily forgetting.

Chunking is often thought of as exclusively sensi-
tive to the raw frequency. This would indeed be the
case if the strength of memory traces only depended
on the repetitions of events. However, it has long
been known that forgetting is due in large part to
the interference generated by the prior or subsequent
events that are related in some way to the target
event. Now, and this is the crucial point, taking into
account the effect of interference in chunk formation
amounts to considering other measures of association
than the raw frequency of co-occurrences. For
instance, implementing forward interference is suffi-
cient to make chunk strength sensitive to transitional
probabilities (Perruchet and Pacton, 2006, Box 3).
Moreover, Perruchet and Peereman (2004) have
shown that the Perruchet and Vinter’s (1998a)
Parser model, thanks to the role ascribed to interfer-
ence in chunk formation, was even sensitive to
contingency, that is, to a measure of association
more comprehensive than conditional probabilities.

To recap, the current debate is between those who
argue that statistical computations are performed
first, with the chunks inferred on the basis of their
results, and those who argue that the chunks are
formed from the outset, with the sensitivity to
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statistical regularities being a by-product of the selec-
tion of those chunks as a consequence of ubiquitous
memory laws. Note that the two interpretations are
equally consistent with associative learning principles.
One advantage of the second option is its parsimony.
Indeed, no additional computational devices have to
be imagined to extract chunks from distributional
information. In addition, the chunk model can be
easily unified with the instance-based model, because
both are grounded on standard memory laws. A uni-
fied view could find an integrative framework in the
so-called processing account of IL. This account bor-
rows, from research in memory, the idea that memory
traces are no more than the by-product of the proces-
sing operations engaged during study, and that
retrieval depends on the overlap between the proces-
sing undertaken during the study and the test phase
(e.g., Roediger et al., 1989). Support for this view in IL
studies stems from the demonstration of the encoding
specificity effects in research into artificial grammar.
For instance, Whittlesea and Dorken (1993) show that
performances in the test phase are better if the proces-
sing involved during the test (pronouncing or spelling
the letter strings) matches the processing involved
during the study phase. Although the processing
account is historically associated with the instance-
based models of IL (e.g., Neal and Hesketh, 1997), its
grounding principles could be applied to chunk-based
models as well.

These considerations, however, cannot be consid-
ered as compelling. At this time, the available
experimental studies intended to tease apart the pre-
dictions from statistical and chunk-based models
have produced equivocal results (e.g., Boucher and
Dienes, 2003). Clearly, the outcome of the debate is
pending further empirical investigations.
2.32.4 How Implicit Is ‘Implicit
Learning’?

What defines implicitness in IL is far from being
agreed upon. A distinction is made, in the following
sections, between what occurs during the training
phase and the test phase of an IL session. The study-
test distinction has limited interest, insofar as in most
real-world situations, and in several laboratory situa-
tions (such as SRT tasks) as well, any event both
influences subsequent events and is itself influenced
by the prior ones, hence serving the two functions
simultaneously. However, this distinction provides a
convenient means to tease apart different issues.
2.32.4.1 Implicitness during the Training
Phase

2.32.4.1.1 Incidental and intentional

learning

A feature which is a part of virtually all definitions of
IL is the incidental nature of the acquisition process.
IL proceeds without people’s intention to learn. This
characteristic is sometimes the only one to be
retained, thus conflating the notion of IL and inci-
dental learning (e.g., Stadler and French, 1994). The
SRT tasks are often considered as those that offer the
best guarantee of the incidental nature of learning,
because this task is endowed with its own internal
purpose, and it leaves quite limited time for thinking
about the task structure. In most of the other IL tasks,
instructions distract participants from thinking about
the overall material structure, by focusing partici-
pants’ attention on individual items. For instance, in
artificial grammar learning, participants are generally
asked for the rote learning of individual letter strings.
In invariant learning, participants are asked to per-
form some arithmetic computation on each digit
string. In other tasks, such as the word-segmentation
task, participants are simply asked to listen to the
artificial language, without specific demands.
2.32.4.1.2 Is attention necessary?

A question of major interest is whether performance
improvement depends on the amount of attention
paid to the study material during the familiarization
phase. The main strategy consists in adding a con-
current secondary task during the training session,
then observing whether performance improvement is
equivalent to that observed in a standard procedure.

A few early studies claimed that the addition of a
secondary task had no effect, or even could facilitate

learning in very complex experimental settings. This
leads to contrast the concepts of ‘selective learning’
and ‘unselective learning’ (e.g., Berry and Broadbent,
1988), with the latter being assumed to occur when
the situation was too complex to be solved by atten-
tion-based mechanisms. The original results were not
replicated, however (e.g., Green and Shanks, 1993),
and to the best of our knowledge, the notion of
unselective learning, as initially discussed in the
studies conducted by Broadbent and colleagues, is
no longer advocated.

The idea of two forms of learning, differing
according to whether attention is required or not,
has also been proposed in another context, but with
the opposite stance. The hypothesis was that
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attention is required for learning complex sequences
in SRT tasks, while nonattentional learning is effi-
cient for the simplest forms of sequential
dependencies (Cohen et al., 1990). However, obser-
ving learning under dual-tasks conditions does not
imply the existence of a nonattentional form of learn-
ing, because the secondary task might not deplete the
attentional resources completely (Stadler, 1995).
Closing their survey on the role of attention in im-
plicit sequence learning, Hsiao and Reber concluded:

We view sequence learning as occurring in back-

ground of the residual attention after the cost of the

tone-counting task [commonly used as a secondary

task in this context] and the key-pressing task. If there

is still sufficient attention available to the encoding of

the sequence, learning will be successful; otherwise,

failure will result. (Hsiao and Reber, 1998: 487)

Regarding artificial grammars, Reber (e.g., 1993) has
also acknowledged that attention to the study mate-
rial is necessary for learning to occur. In support of
this claim, Dienes et al. (1991) have shown that the
accuracy of grammaticality judgments was lowered
when subjects had to perform a concurrent random
number generation task during the familiarization
phase.

Note also that other studies have shown that, with-
out at least minimal attentional involvement, even
simple covariations or regularities turn out to be
impossible to learn ( Jimenez and Mendez, 1999;
Hoffmann and Sebald, 2005; Pacton and Perruchet,
in press; Rowland and Shanks, 2006b). The conclusion
according to which improved performance in IL situa-
tion requires attention has been recently supported by
studies on statistical learning using continuous speech
flow (Toro et al., 2005) or visual displays (Baker et al.,
2005; Turk-Browne et al., 2005). This conclusion
comes as no surprise, because the major role played
by selective attention in acquisition processes is an old
and robust empirical finding (for another approach
that emphasizes the role of attention, see Frensch
et al., 1994).
2.32.4.2 Implicitness during the Test Phase

2.32.4.2.1 The lack of conscious

knowledge about the study material

Is it possible to improve his/her performance with-
out being conscious of what has been learned? A
considerable amount of studies have addressed
this question by exploring participants’ explicit
knowledge through postexperimental tests. Overall,
a number of studies report that participants are aware
of the knowledge they have acquired. However,
other studies report that participants fail in the test
of explicit knowledge. The question is: Are those
negative results reliable? A number of potential
drawbacks have been raised.

2.32.4.2.2 The Shanks and St. John

information criterion

The first problem is linked to the fact that exploring
whether knowledge is consciously represented pri-
marily requires that the knowledge relevant for
performing the task has been correctly identified. In
an influential synthesis of the literature, Shanks
and St. John (1994) coined this requirement as the
‘information criterion.’ The information criterion sti-
pulates that the information the experimenter is
looking for in the awareness test needs to match the
information responsible for the performance change.

Although the cogency of this criterion may seem
obvious, it must be realized that it entails that any
conclusion about implicitness entirely depends on
the response given to the ‘what is learned’ question
raised in the prior sections. Any error in the hypothe-
sized content of knowledge, far from being a ‘‘slightly
embarrassing methodological glitch’’ (Reber, 1993,
note p. 44, 114-115), has dramatic consequences on
the inference that one may drawn about the implicit/
explicit status of the acquired knowledge. For
instance, Reber and Allen correctly pointed out that:

. . . clearly a considerable proportion of subjects’

articulated knowledge can be characterized as an

awareness of permissible and nonpermissible letter

pairs. (Reber and Allen, 1978: 210).

However, the authors did not realize that this form of
knowledge was sufficient to account for performance.
Instead, they attributed performance improvement to
rule knowledge, which they concluded to be the
result of unconscious abstraction. A large part of the
earlier claims for the lack of conscious knowledge
about the study material seemingly stems from this
problem, also known as the problem of the ‘correlated
hypotheses’ after the seminal studies by Dulany
(1961) and Dulany et al. (1984).

2.32.4.2.3 The Shanks and St. John

sensitivity criterion

According to Shanks and St. John, a second criterion
is that the test of explicit knowledge is sensitive to all
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of the relevant conscious knowledge. A test of free
recall, such as used in the early studies on IL, is
notoriously insensitive. For instance, participants
may not report some knowledge they have about
the material structure, because they have a conserva-
tive response criterion that makes them respond only
when their knowledge is held with high confidence,
or simply because they think this knowledge is irre-
levant or trivial. For this reason, most studies now
involve a test of recognition, in which participants
have to discriminate items belonging to the training
materials from new items. However, performing no
better than chance in a recognition test is not neces-
sarily a proof that participants lack any explicit
knowledge about the task. For instance, Reed and
Johnson (1994) used a recognition test after an SRT
task and observed that recognition scores were at
chance. In an attempted replication involving the
same procedure, Shanks and Johnstone (1999) found
instead very high levels of recognition. The only
difference between the two studies was that partici-
pants in Shanks and Johnstone were rewarded by an
extra sum of money for each correct decision.
Performing the recognition test is somewhat tedious,
and presumably participants in the Reed and Johnson
study were not motivated enough to make the effort
required to perform the task correctly.

2.32.4.2.4 The problems of forgetting

In the standard procedure, the explicit tests are post-
poned after the task of IL, thus raising the problem
of the retention of the knowledge exploited during
the implicit test. For instance, Destrebecqz and
Cleeremans (2001) reported chance-level recogni-
tion in an SRT paradigm (at least for a group of
participants). Notably, the test of recognition was
administered after participants had performed
another task, in which they had to generate sequences
under various instructions (see below). Shanks et al.
(2003) attempted to reproduce Destrebecqz and
Cleeremans’ dissociation between RT measures and
recognition scores, but in conditions in which the two
kinds of measures were taken concurrently. In three
experiments, they failed to replicate the Destrebecqz
and Cleeremans’ dissociation and obtained instead
clear evidence of recognition. Note that the problems
of forgetting are made especially important due to
the fact that a recognition test necessarily includes
the exposure to new sequences (generally half of the
test items). Because these new sequences are highly
similar to old sequences, they are prone to generate
interference for the subsequent test trials.
2.32.4.2.5 The problem of the reliability

of measures

The scores in implicit and explicit tasks are often
found to be correlated. For instance, in SRT tasks,
Perruchet and Amorim (1992) reported that Pearson
correlations over the sequence trials between RT and
recognition scores ranged, in three experiments, from
.63 to .98. However, some authors (e.g., Willingham
et al., 1993) have argued that evidence for uncon-
scious knowledge was given by the fact that learning
could be still observed when the analysis was
restricted to the subgroup of items (or the subgroup
of participants) for which no evidence of explicit
knowledge was gathered. This argument is question-
able, however. As discussed in Perruchet and
Amorim (1992), the method, in effect, dichotomizes
the scores on the implicit measure on the one hand,
and on the explicit measure on the other, to assign
the items or the participants to a fourfold contin-
gency table. Then inference for dissociation is
drawn from the observation that some items or
some participants fall into the discordant cells of the
contingency table, or in other words, that the corre-
lation is not perfect. The problem with this method is
that a prerequisite for obtaining a perfect correlation
is perfect reliability of measures. This condition is
highly unrealistic for psychological measures, espe-
cially for the scores on implicit tests (Meier and
Perrig, 2000; Buchner and Brandt, 2003). Shanks
and Perruchet (2002) have developed this reasoning
into a quantitative model, which assumes that the
sources of error plaguing implicit and explicit mea-
sure are independent. Although the model involved a
single underlying memory variable, it turned out to
be able to generate a dissociation between RTs and
recognition in SRT tasks that mimics fairly well the
dissociation the authors reported themselves (despite
the temporal synchrony of measures).

2.32.4.2.6 An intractable issue?

To sum up, the current evidence for the lack of con-
scious knowledge about the study material is weak at
best. There is currently no identified condition allow-
ing one to obtain a reproducible dissociation. Most of
the experiments reporting above-chance performance
in implicit measures and chance-level performance in
explicit tests have been replicated in more stringent
conditions, and it turns out that, as a rule, the dissocia-
tion no longer appears when appropriate controls are
made.

These data do not allow clear conclusions. On the
one hand, the preceding discussion makes it clear that
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it is impossible to conclude to the existence of learning
without any conscious counterpart. But, on the other
hand, it should be also unwarranted to infer from the
current findings that conscious awareness of the mate-
rial structure is necessary for performance
improvement. The first reason is a logical one, which
has been met with regard to rule abstraction, namely, it
is not possible to prove that something does not exist.
There is yet another reason, linked to the fact that no
task is process-pure, as has been well documented in
the literature on implicit memory. This is especially
true for the most sensitive tests, such as recognition.
Jacoby (1983), and many others since, have argued that
the relative fluency of perception, which relies on
implicit process, may be used as a cue for discriminat-
ing old from new items in a recognition task, thus
making a variable contribution to recognition judg-
ments over and beyond a directed memory search
factor. This entails that above-chance recognition
after an IL task does not provide a compelling evi-
dence for explicit knowledge. To date, it is not clear
how further studies could solve this conundrum. Some
authors (e.g., Higham et al., 2000) have suggested that
those problems are intractable and should prompt
researchers to give up any attempts to demonstrate
learning without concurrent consciousness.
2.32.4.2.7 The subjective measures

The measures discussed so far are often called ‘objec-
tive,’ because it is the experimenter that judges the
level of awareness of participants from their perfor-
mance in specific tests. Another way of defining
implicitness starts from the consideration of the phe-
nomenal state of the participants such as it may be
directly expressed. Two such ‘subjective’ measures of
implicitness have been proposed in the literature, the
guessing criterion and the zero-correlation criterion
(Dienes et al., 1995). In both cases, participants are
submitted to a test of explicit knowledge such as a
recognition test, and they have to rate how confident
they are about each decision. To check whether the
guessing criterion is filled, the scores on the recogni-
tion test are restricted to those of the decisions
that are accompanied by a subjective experience of
guessing. If participants achieve above-chance dis-
crimination while they report to be guessing, the
guessing criterion is met. The zero-correlation cri-
terion rests on the idea that, if knowledge is implicit,
participants must not be more confident when they
are correct than when they are incorrect. As a con-
sequence, if participants have no introspection into
the bases of their decisions, the correlation between
confidence and accuracy should be null.

Can performances on standard IL tasks be called
implicit according to these criteria? The literature
again does not provide a clear response, with some
studies reporting positive results and others negative
results. In fact, the general picture appears similar to
that observed with objective measures, with initially
positive findings being not replicated when more
sensitive measures are used. For instance, Dienes
and Altman (1997) reported a zero correlation
between confidence and accuracy in an artificial
grammar learning task involving a transfer paradigm.
Notably, participants had to assess their confidence
on a continuous scale ranging from 50 to 100, where
50 was a complete guess and 100 was absolutely sure.
Using the same scale, Tunney and Shanks (2003b)
replicated this result. However, based on a study by
Kunimoto et al. (2001), Tunney and Shanks reasoned
that a binary confidence judgment could be more
sensitive, maybe because participants might find it
easier to express subjective states on a binary than on
a continuous scale. When participants had to express
their confidence on a binary scale, they were found to
be systematically more confident in their correct
decision than in their incorrect decision in several
independent experiments. To conclude, irrespective
of the a priori validity that one decides to ascribe to
subjective measure of implicitness, it appears that
there is to date no identified procedure that fulfills
subjective criteria in a reproducible way.

2.32.4.2.8 The lack of control

One possible meaning of ‘implicitness’ is that of
‘automaticity.’ One of the key features usually attrib-
uted to automatic behavior is that it is irrepressible,
irrespective of people’s intentions to do so. Although
recent literature on automaticity has questioned the
possibility that any learned behavior - even reading,
which is often construed as prototypical of automa-
ticity – could actually be outside of control (e.g.,
Tzelgov et al., 1992), the question of whether the
expression of knowledge in IL tasks shares this prop-
erty deserves to be raised. Such a demonstration was
provided by Destrebecqz and Cleeremans (2001) in
an SRT task. In an application of Jacoby’s process
dissociation procedure ( Jacoby, 1991) to this task, the
authors asked participants to generate a sequence
under two successive conditions during the test
phase of an otherwise standard SRT procedure. In
the first condition, they were told to generate the
sequences they were previously exposed to, and if
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they fail to remember them, to generate sequences as
they come to their minds (the inclusion instructions).
Then participants had to produce a sequence of key-
presses that did not overlap with the training
sequence (the exclusion instructions). Crucially, par-
ticipants - at least a subgroup of participants trained
without any interval between the response to a target
and the appearance of the next target - were influ-
enced by the training sequences despite their
intention to prevent this from happening. They per-
formed in the same ways irrespective of the
instructions, and under exclusion instructions, they
generated the training sequence more than would be
expected from an appropriate baseline.

These findings, however, have proven to be diffi-
cult to replicate. In the same conditions, Wilkinson
and Shanks (2004) found that participants were more
influenced by the training sequence under inclusion
than under exclusion instructions (see also
Destrebecqz and Cleeremans, 2003). In three experi-
ments, Wilkinson and Shanks also failed to replicate
the results according to which parts of the training
sequence were generated more often under exclusion
instructions than in the baseline, even after more
extensive training than used by Destrebecqz and
Cleeremans (2001) - although they did not get any
negative difference either, as it could be expected if
participants were able to withdraw the parts of the
training sequence from influencing their production.
Overall, these and others results (see for instance
Dienes et al., 1995; Tunney and Shanks, 2003a)
offer only quite limited evidence for the conclusion
that knowledge gained in IL settings lies outside of
intentional control.

2.32.4.2.9 The lack of intentional

exploitation of acquired knowledge

The fact that participants are seemingly able to with-
draw the influence of prior training when they are
asked to do so does not mean that, under standard
conditions, this influence is intentionally mediated.
The lack of intentional exploitation of stored knowl-
edge seems to be a hallmark of the real-world
examples given at the outset of this chapter.
Presumably nobody has the intuition of applying
strategically a core of learned knowledge when
speaking his maternal language, hearing music, or
conforming to physical or social rules. Is this intuition
confirmed in experimental studies?

The question is made difficult by the fact that, in
most cases, influences expected from the intentional
exploitation of conscious knowledge about the
relevant aspects of the situation would have the
very same effects as those induced by unconscious
processes. As a consequence, it has been suggested
that performance in IL tests can be accounted for by
the use of explicit knowledge about various aspects of
the experimental situation (Dulany et al., 1984;
Shanks and St. John, 1994). It is certainly impossible
to rule out this contention in general. However, it
should be unwarranted to generalize it to all IL tasks.
Indeed, there are cases in which the conscious exploi-
tation of explicit knowledge does not coincide with
the expected results of unconscious processing. One
example is provided by the grammar learning studies
involving preference judgments. Indeed, there should
be a priori no reason for the knowledge about the
material to be used to guide a preference judgment.
However, participants consistently prefer grammati-
cal items (e.g., Manza et al., 1998).

Vinter and Perruchet (2000) proposed a new task
of IL that was especially devised to eliminate the
potential influence of intentional control. When
adults are asked to draw a closed geometrical figure
such as a circle, their production exhibits a striking
regularity. If they begin the circle in the lower half,
they tend to rotate clockwise, and if they begin the
circle in the upper half, they tend to rotate counter
clockwise. In Vinter and Perruchet experiments, par-
ticipants were guided to draw geometrical figures in
such a way that this natural covariation was inverted.
This training induced important and long-lasting
modifications of subsequent free drawings. The
point of interest is that, even if participants had
become aware of the inverted covariation between
the starting point and the rotation direction they
experienced during the training session, they should
have no reason to modify their usual mode of draw-
ing as they did. This study provides clear evidence
for an adaptive mode in which subjects’ behavior
becomes sensitive to the structural features of an
experienced situation, without the adaptation being
due to the intentional exploitation of subjects’ expli-
cit knowledge about these features.
2.32.4.3 Processing Fluency and
Conscious Experience

Let us now reverse the direction of the potential
relation between learning mechanisms and conscious
thought, in order to examine the level of dependency
of conscious thought with regard to IL.

An influential model of how training in IL settings
leads to a change in performance posits that training
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induces a modification in the subjective experience of
the learner. More specifically, the underlying idea is
that training improves the fluency of perceptual pro-
cessing for the studied materials. This account was
initially proposed by Servan-Schreiber and Anderson
(1990) in the context of their chunking theory. In fact,
however, the improved processing fluency can also
be attributed to other forms of knowledge, such as
rules or memory for specific instances. Thus a flu-
ency theory has been advocated as well by those
researchers who maintain a role for rule-based pro-
cessing (Zizak and Reber, 2004) and by those who
consider that statistical computations are sufficient
(e.g., Conway and Christiansen, 2005).

Let us examine how this account works in artifi-
cial grammar learning paradigms. The assumption is
that, after training with a sample of grammatical
strings of letters, new grammatical strings are pro-
cessed fluently, or more precisely, more fluently than
expected (Whittlesea and Williams, 2000), hence
generating a feeling of familiarity leading itself to
endorse the strings as grammatical. The two steps of
this hypothesis have received experimental support.
The fact that exposure to the training strings
improved processing fluency has been shown by
Buchner (1994). The test strings were displayed in
such a way that they emerged progressively from
noise, a procedure known as a perceptual clarifica-
tion procedure. It turned out that grammatical strings
were identified about 200 ms faster than ungramma-
tical ones. The fact that improved fluency in turn
influences grammaticality judgments has been
demonstrated using a method well documented in
the literature on implicit memory, which consists in
artificially enhancing the fluency of processing of
selected items. During the test phase of an otherwise
standard artificial grammar learning experiments,
Kinder et al. (2003) exposed participants to test
strings that did not differ in their grammatical status
(they were all grammatical). The test strings were
displayed in a perceptual clarification procedure as in
Buchner (1994), except that some strings were clar-
ified slightly faster than the others. Participants
judged the former more often grammatical than the
latter.

The fluency account suggests that IL modifies the
subjective experience of the learner. However, the
induced modifications appear to be quite minor,
insofar as they are prompted by a gain of some frac-
tions of second in processing speed. The frequent
rapprochement of the concepts of IL and priming
(e.g., Cleeremans et al., 1998; Conway and
Christiansen, 2006; Kinder et al., 2003) is consonant
with the idea that the training-induced modifications
are relatively inconsequential. It is also possible to
consider that the changes in the conscious experience
of the learner are much more striking. For instance,
in artificial grammar learning, participants normally
learn to perceive the grammatical strings as a
sequence of chunks the content of which is consonant
with the structure of the grammar (e.g., the sequences
of letters composing a recursive loop have high
chance of being perceived as chunks, see Servan-
Schreiber and Anderson, 1990; Perruchet et al.,
2002). Likewise, in word-segmentation studies, the
speechflow, which is initially perceived as an unor-
ganized set of syllables, turns out to be perceived as a
sequence of units, which match the words composing
the language. More generally, an essential function of
IL could be that of making the conscious perception
and representation of the world isomorphic with
world’s deep structure. Because this change in sub-
jective experience can be construed as a simple by-
product of the attentional processing of the incoming
information, Perruchet and Vinter (2002) have sug-
gested the concept of ‘self-organizing consciousness’
to express the idea that IL shapes new conscious
percepts and representations in a way which make
them increasingly adaptive (see also Perruchet, 2005;
Perruchet et al., 1997).

Neither the fluency account nor Perruchet and
Vinter’s (2002) self-organizing consciousness model
is aimed to account for all behavioral changes
observed in IL settings. For instance, although the
fluency account is relatively consensual (partly due
to the fact that it is mute with regard to the nature of
knowledge inducing fluency), this account explains
only a part of the performances observed in IL settings.
Even in the artificial grammar learning paradigm,
which is a priori a well-suited field of application,
relative processing fluency does not seem to be able
to account for the whole pattern of grammaticality
judgments (Buchner, 1994; see also Zizak and Reber,
2004, p.23). However, these models point to the pos-
sibility of considering IL and consciousness not in
terms of dissociation or independence, but rather in
terms of dynamic interplay.
2.32.4.4 Summary and Discussion

To sum up, research of the last few decades has
shown that it is surprisingly difficult to specify in
what sense IL is implicit. The notion of unselective,
nonattentional learning has vanished in light of
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studies demonstrating that learning requires at least
some forms of attentional processing of the incoming
information. Likewise, there are quite limited sup-
ports to claim that while they perform the implicit
test participants (1) have no conscious knowledge
about the study material, (2) have the subjective
experience of guessing, or (3) have no control over
the expression of their knowledge. Of course, it is
possible to include one or the other of these features
within a definition of IL, and some authors did so (for
a sample of definitions, see Frensch, 1998). However,
endorsing this kind of definition leads to the some-
what paradoxical consequence of giving to a research
domain the objective of checking whether this
domain actually exists. To date, there is no specified
paradigm in which one or the other of these criteria
can be asserted in a consensual and reproducible way.

A feature that can be retained with higher con-
fidence is the lack of intentional exploitation of
stored knowledge. This does not mean, obviously,
that this condition is fulfilled in each and every
study, but rather that the existence of the phenom-
enon can be reasonably asserted on the basis of
reproducible evidence. Accepting the role of uncon-
scious influences, however, does not lead us to
conceive IL and conscious experiences as divorced
one from each other. There is indeed extnsive evi-
dence that these unconscious influences primarily
affect the conscious experience of the learner.
2.32.5 Implicit Learning in
Real-World Settings

2.32.5.1 Exploiting the Properties of
Real-World Situations

Although most of research on IL uses artificial,
laboratory situations, natural situations have been
used on occasion to shed light on specific issues. In
this case, only the test phase is carried out in well-
controlled experimental conditions, while implicit
training is assumed to have occurred previously in
natural settings. For instance, Pacton et al. (2001)
exploited the very extended time scale on which
real-world learning takes place to examine whether
transfer decrement (see the section titled ‘The phe-
nomenon of transfer: the interpretations’) is a
transitory or an enduring phenomenon. The issue is
important, because it can be argued that the transfer
decrement commonly observed in laboratory set-
tings, which is one of the arguments used against a
rule-based view, is simply due to the fact that
training is not extensive enough to allow the full
development of rule abstraction. Pacton et al.
explored the development of the sensitivity to certain
orthographic regularities not explicitly taught at
school. They showed that the decrement in perfor-
mance due to transfer persisted without any trend
toward fading over the 5 years of experience with
printed language that they examined, hence
strengthening the claim that IL is not mediated by
rule knowledge.
2.32.5.2 Exploiting our Knowledge about
Implicit Learning

The knowledge gained in laboratory studies is aimed
at improving our understanding of world-sized
issues. Explicit loans from the IL literature have
been made occasionally in a number of domains,
including child development (Perruchet and Vinter,
1998b), second-language acquisition (e.g., Ellis, 1994;
Robinson, 2002), spelling acquisition (Kemp and
Bryant, 2003; Pacton et al., 2005; Pacton and
Deacon, in press), and the development of gustatory
preferences (Brunstrom, 2004). To various degrees,
the concepts and the methodology of laboratory
studies have inspired researchers to progress in the
understanding of these domains. In regard of the
potential relevance of IL mechanisms in these and
other domains, much more could be made in this
direction, however. The only domain in which a
sizeable amount of literature has emerged concerns
the relationships between IL and natural language
acquisition (e.g., Gomez and Gerken, 2000). This
rapprochement is partly due to the fact that research
on language has evolved on its own toward methods –
the use of artificial languages – and concepts – notably
around the notion of statistical learning – that are also
at the heart of IL research.

The practical applications of IL, for instance for
educative purposes or the reeducation of neurologi-
cal patients, appear to be still sparser. Some methods
have evolved that exploit principles which can be a

posteriori related to IL principles, such as using con-
ditions as similar as possible to natural learning to
teach second language (after Krashen, 1981) or read-
ing (for a review, see Graham, 2000). An extensive
literature also concern the use of errorless learning
for reeducative purposes in a neuropsychological
perspective (see review in Fillingham et al., 2003).
But most of these attempts have been conducted
without considering the possible contribution of IL
research (for a recent exception, see Saetrevik et al.,
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2006). The explanations for this relative paucity are
certainly manifold. One of them may be that learning
in real-world situations most often involve some
mixture of implicit (or incidental) and explicit (or
intentional) learning. Now, the interactions between
these forms of learning have not been at focus in the
literature on IL, because, except in a few studies (e.g.,
Matthews et al., 1989), the objective has been to
isolate implicit processes to examine them in their
maximum state of purity. Further studies are needed
to assess how, for instance, the learning of rules in
explicit conditions may be combined with implicit
statistical learning.
2.32.6 Discussion: About Nativism
and Empiricism

Let us return to a question raised at the outset of this
chapter, which stemmed from the lack of considera-
tion during the behaviorist era of issues such as first-
language acquisition, category elaboration, sensitiv-
ity to musical structure, acquisition of knowledge
about the physical world, and various social skills. It
was pointed out that this situation opened the door to
the upsurge of a nativist perspective. Where do the
studies reported in this chapter leave us?

At first glance, the mechanisms of IL, as they are
revealed in laboratory studies, appear as definitely
underpowered. The picture given by recent research
stands far from the idea of the extraordinarily power-
ful processes that were imagined once, for instance by
Lewicki et al., when they contended that ‘‘our non-
conscious operating processing algorithms can do
instantly and without external help’’ the same job as
our conscious thinking achieves in relying on ‘‘notes
(with flowchart or lists of if-then statements) or com-
puter’’ (Lewicki et al., 1992, p.798). In fact, IL
processes are probably unable to bring out to genuine
rule knowledge, and the possibility of transfer are
limited. In addition, the involvement of these pro-
cesses seems to be dependent on selective attention.
As pointed out above, the experimental study of
learning around the 1960s was essentially devoted
to classical and operant conditioning on the one
hand and to the formation of concepts or problem-
solving processes on the other hand. To make a long
story short, IL mechanisms seem to be much nearer
to the former than to the latter.

To be sure, experimental studies show that
participants generally perform above chance in com-
plex experimental settings. However, above-chance
performance is generally attributable to the learning
of some indirect, correlated aspects, which can be
easily captured by elementary mechanisms. Every-
thing happens as if IL often captured only nonessen-
tial aspects of the task. In experimental contexts,
these correlated features are often considered as
potential drawbacks, which need to be eliminated to
reach the deep substance of the training material. For
instance, studies in artificial grammar learning are
often designed in such a way that bigram distribution
becomes noninformative, studies in invariant learn-
ing often are controlled in such a way that the
repetition of digits brings out no information about
the invariant, and so on.

On the face of it, these data seem to provide fuel
for a perspective in which the role of learning is
minimized with regard to innate abilities. This is
indeed the case if one considers that the knowledge
base underlying the mastery of language and of the
other high-level abilities alluded to above should be
of the same form as the knowledge base that the
scientist - for instance the linguist - acquires from
an analytic investigation into his or her domain, that
is, a formal, rule-based set of principles. This form of
knowledge seems indeed to be definitely out of reach
of IL processes.

However, a quite different perspective is possible.
The general idea consists in assuming that learning in
real-world setting proceeds as in the laboratory, that
is, through the capture of correlated, apparently sec-
ondary aspects that can be grasped by elementary
associative processes and that allow a good approx-
imation of the behavior that would result from the
knowledge of the formal structure of the domain. In
order to be viable, such a perspective requires that
the objective analysis of specific domains provides
evidence for such correlated features. Quite interest-
ingly, recent research on language has revealed a
number of such features. The best-documented
example is certainly the past-tense formation in
English, in which it has been shown that regular
and irregular verbs differ according to the distribu-
tion of their phonological and semantic features.
Connectionist simulations have shown that exploit-
ing those correlated cues leads to a very good
approximation of the performance that would result
from the formal knowledge of the -ed suffix rule,
along with the knowledge of the exceptions (e.g.,
McClelland and Patterson, 2002). To consider
another illustration, it has been shown that simple
co-occurrence statistics (e.g., Redington et al., 1998)
as well as phonological cues (e.g., Monaghan et al.,
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2005) turn out to be highly informative about gram-

matical categories. These and other studies suggest

that, as far as language is concerned, abstract classes

and categories are often associated with simple sta-

tistical properties that make them tractable by

general-purpose statistical learning mechanisms.
If further studies on language corpuses confirm and

extend this kind of findings, and if the same kind of

analysis proves to be successful in other high-level

domains of competence, then IL mechanisms would

appear extraordinarily powerful to promote behavior-

al adaptation. Indeed, those mechanisms are

remarkably well-suited to exploit a massive amount

of correlated cues. This approach appears to provide

the first viable alternative to the nativist perspective

that is still prevalent in the cognitive approach starting

from Chomsky. The development of a full-blown

empiricist alternative depends obviously upon further

investigations on human learning processes, but also

on the development of a nonconventional mode of

description of the world humans are faced with.
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